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Abstract

An analysis of density-wave instabilities in boiling channels based on delay equations is presented. A
two-dimensional mapping is derived from the flow conservation equations by assuming constant transport
delays along the different parts of the channel. The simplicity of the final equation allows the fully analytical
treatment of the system dynamics, both linear and non-linear, valid for high inlet subcoolings. Hopf bi-
furcations, subcritical and supercritical, could be identified and treated using perturbation methods. The
derivation of a fully analytical criterion for Hopf bifurcation transcription was applied to determine the
amplitude of limit cycles and the maximum allowed perturbations necessary to break the system stability.
© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The phenomenon of density-wave instabilities in boiling channels has been extensively studied
during the last 30 years (Lahey and Drew, 1980; Lahey, 1986). These oscillations may be en-
countered for certain operating conditions of boiling systems, where they become unstable due to
lags in the phasing of the pressure-drop feedback mechanisms. Given the appropriate set of
operating conditions, these delays may lead to self-excitation (Lahey and Moody, 1977). The most
common manifestations of density-wave instabilities are self-sustained oscillations of the flow
variables. The amplitudes of these oscillations can be very large, and can lead to flow reversals.

Density-wave instabilities in boiling systems, besides being scientifically interesting, represent
serious practical implications for many industries. Phase-change heat exchangers, various
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chemical-process equipments and steam generators, to name a few, are potential candidates to
experience density-wave instability.

The classical tool used to study the problem of density-wave instability in boiling systems is the
linear frequency-domain analysis. Rather accurate and reliable models are now available for the
analysis of complicated systems (Taleyarkhan et al., 1983; Peng et al., 1986; Xiao et al., 1993).

The study of the non-linear behavior of density-wave instabilities has attracted considerable
interest recently (van Bragt et al., 1999). It has been found that Hopf bifurcations appear in
boiling channels dynamics (Achard et al., 1985; Rizwan-Uddin and Dorning, 1988). Hopf-
bifurcation theory (Hopf, 1942) shows the existence of periodic solutions in a narrow strip either
on the stable side, or the unstable side, of a stability boundary. The case when the periodic so-
lution lies on the stable side is called a subcritical bifurcation, and when it lies on the unstable side
is called a supercritical bifurcation. When operating in the stable region, the theory shows that, for
a subcritical case, sufficiently large perturbations will diverge from the steady state; while, in the
supercritical case, all small but finite-amplitude perturbations decay to zero in the stable region.
For operation in the unstable region in the subcritical case, all perturbations diverge from the
equilibrium. In contrast, in the supercritical case, the periodic solution is stable in the region of
linear instability, and thus all perturbations eventually evolve to a limit cycle.

In this paper, a theoretical analysis of a model of density-wave oscillations based on delay
equations is presented. Non-linear effects are studied by means of Hopf bifurcation character-
ization, leading to the identification of metastable operating conditions, associated with sub-
critical bifurcations.

2. Boiling channel model

Let us consider the boiling channel shown in Fig. 1. The liquid enters at constant subcooled
temperature and is heated uniformly along the channel. At certain location the fluid reaches its
saturation temperature and starts to boil, exiting the channel as a two-phase mixture. In order to
simplify the channel dynamics, the following assumptions are made:

Equilibrium homogeneous model.

The system pressure is constant.

The heat flux is constant in space and time.

Both phases are incompressible.

Viscous dissipation and internal heat generation are neglected in the energy equation.
Friction is concentrated at the inlet and the exit of the channel.

In the hypotheses above, the one-dimensional conservation equations of mass and energy yield
to (Lahey and Moody, 1977)

ue = uj + Q(Len — 1), (1)
where u; and u, are the inlet and exit velocities, Ly, the channel length, and the subcooled length,
A(t), is defined by

a(t) = / () dt. 2)
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Fig. 1. Boiling channel.

In Egs. (1) and (2), Q is the characteristic frequency (qug,/hs,), g the volumetric power, vy, the
specific volume difference, /g, the latent heat of evaporation, and v is the single-phase residence
time.

For low frequencies Eq. (2) can be written as (Clausse et al., 1995)

At) = /t_t ui () di’ = vu;(t — 1), (3)

where, 71 is a time delay such that 0 < #; < v.

Let us assume a quasi-static balance of forces in the momentum equation (Appendix C). At
high Froude numbers the drag and acceleration forces then balance the external pressure head,
that is,

(ki — 1)pp; + (ke + 1)pul = Ap, (4)

where k; and k. are the friction coefficients, p; and p. are the liquid and exit density, and Ap is the
pressure drop.

Following a quasi-static approximation we can assume that the exit flow follows the history of
the inlet flow (Clausse et al., 1995), that is,

pe(t)ue(t) = prui(t — 1), (5)

where ¢, is a certain transport delay.
In Appendices A and B, Eqgs. (3) and (5) are analyzed in more detail, concluding that the best
assessment for ¢ and 7, is

L=2t=v

and Egs. (1)-(5) can be combined in a difference equation relating the shifted-time values of the
inlet velocity u = u;(¢), v’ = u;(t — v/2), v = u;(¢t — v), according to
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Eu

ku? + u”[u + Ny (1 — )] = ket 17

(6)
where the velocity is expressed in units of u, = v~'Lg,. The reference velocity is chosen such that
the boiling boundary is at the end of the channel when the dimensionless velocity is unity. The
following dimensionless numbers were defined:

Ngp = Qv, subcooling number,

Npeh = QLen/uy, phase-change number,
k= (ki —1)/(ke+ 1), friction number,
Eu = Ap/pu?, Euler number.

The operating conditions Eq. (6) is valid for are (Appendices A and B):
® Ngap > 1 (values higher that 10 already yield good results),
° sub/Npch > 0.44.

Eq. (6) represents an algebraic representation of the dynamics of a boiling channel by means of
a two-dimensional mapping of the inlet velocity. Fig. 2 shows the evolution in the phase plane of a
boiling channel according to Eq. (6). The theory compares fairly well with experiments provided
that the friction terms dominate the flow dynamics (Juanico, 1997). Numerical analyses (in the
time domain) performed in order to assess the matching of Eq. (6) with the complete differential
model show good agreements for large N, (Clausse et al., 1995).
It should be stressed that Eq. (6) is only valid under some assumptions, namely:
Constant and uniform heat flux.
Friction concentrated at the inlet and the exit of the channel.
Large subcooling numbers.
Low Froude numbers.
Low frequencies.
Examples of situations under which these assumptions are reasonable are short channels with
small tube friction, and systems with strong pressure jumps at the inlet and outlet (orifices or
valves).
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Fig. 2. Phase-plane dynamics of inlet velocity and subcooled length (Ngyp, = 50, Npen = 91.1, &£ = 19.5).
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3. Perturbation analysis

In the steady state (that is, u = v/ = u” = ug) the inlet velocity should satisfy

Eu

. 7

et 1) 7
The value of the steady-state velocity, u,, equals the steady-state subcooled fraction length
)“0 — Nsub/Npch-

Linearizing Eq. (6) about u, leads to the linear difference equation

{[U() +Nsub(u0 — 1)][‘12 — NsubMQH + (2k + l)uo}(u — M()) = O, (8)

where H is the shift operator (that is, Hu(t) = u(t — 1)).
The steady state becomes oscillatory unstable when the module of any complex root of the

characteristic equation associated to Eq. (8) becomes larger than unity, which occurs for (Clausse
et al., 1995)

kué + uO[“O +Nsub(1 - uO)] =

]vsub(1 - M())

k=ho= 2u
0

©)

Thus, provided that the eigenvalues are complex and Eq. (9) is satisfied, the system dynamics is
described by

u(t) = up + ou sin wt, (10)
where Ju is the perturbation amplitude, and the angular frequency w is given by

»— arctan(fi/x)

SLES (1)
where
Naupto
o= , 12
2[uy + Ngwn (1 — up)] (12)
NsubuO :
=4/1— ) 13
p \/ Llo + Naw (1 — up) (13)

The stability margin given by Eq. (9) was compared with the linear analysis of the distributed
parameters model of density-waves (Achard et al., 1985; Lahey, 1986), showing excellent agree-
ment for subcooling numbers higher than 10. Fig. 3 shows the comparison between stability
margins calculated using different degrees of simplification.

Following the standard procedure in Hopf bifurcation theory (Hassard et al., 1981; Hale and
Kokak, 1991), let us consider a small departure of k from ky. The system variables can be ex-
panded in powers of a small parameter ¢ according to

u(t) = ug + euy (¢) + uz(t) + - -, (14a)

k:k0+k18+k282+"'7 (14b)
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Fig. 3. Linear stability margin (k = 19.5). Present model (solid line), distributed parameter model (dashed line).

1
t:9<a;+ﬁ8+fﬁ2+.”>‘ (140
The time stretching defined in Eq. (14c) implies over the delays:
u(t_f) = u(@—wr) + (‘5134-‘52524_...)6%(06/)
0 =0-w1 (15)
! ) 2 Qu(0)
+_(Tlg+728 +)7/2 4
. 00 0 =0-w1

and a similar expression for u(¢ — 21).
Combining Egs. (6), (14a)—(15) and collecting like powers of ¢ yields to

{[Mo +Nsub(uo — 1)][‘[2 — NsubuoH —I— (2k + l)uo}un = Sn, (16)
where
Sl - 07 (173)

du) du’l’
do do

Sz = —k()u% — 2140](1“1 + UpTq (Nsub > - ulu'{ + Nsubullu'l', (17b)

duf L AN,
Sy = —2koujuy — 2upkou; — ki (Zuouz + u%) ( d@l dgl % + d02 ) — Ul

duf du du 2
( a0 T+ ”2) +Nsubu0< do 2 d@zl 2) +Nsubu1 < T + ”2)
duf du” Pdu! du”
! _ _ 1 i I 2
 Nouwtty ( ag " +”2> Nown(1 )< B> Tt >

(17¢)
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Under the proper circumstances (that is, complex eigenvalues crossing the imaginary axis as the
parameter k is varied) the Hopf theorem states that a family of periodic solutions, with small
amplitude &, exists in the neighborhood of the stability boundary. The necessary and sufficient
condition for Eqgs. (17a)—(17c) to have a periodic solution is the so-called “Fredholm alternative”
condition (Achard et al., 1985; Lahey, 1986):

1 2n )
—/ S, e do=1. (18)
T Jo
Let us introduce the following solutions for Eq. (16):
u; = cos 0, (19a)
U, = a-+ by cos 0+ b, sin 0 + ¢, cos 20 + ¢, sin 20. (19b)
Now, combining Egs. (16)-(19b) yields to:
k=0, (20a)
71 =0, (20b)
by =0, (20c)
b, =0, (20d)
1 Nsub<”‘;—g1) + cos(2wt) — Ny cos (w1) o)
‘= 4 2(Z\fsub + uO) - 3Nsubu0 ’
| (Mmi{;uo)) 20t 4 | — N, e—20 )
T T4 Nawtto — 2(uo + Newn (1 — u)) cos 2wr) |
N (1 —
2upky = — b(7u0>(a +c1) —er(at = 60> + ﬁ4) —a+4e (o’ — cxﬁ3)

Uo
+Nsuba(oc2 — [32) + Na(c1 + aa) + Ny (oc3 — 305[32) — Nsubc2(3oc2ﬂ — ﬁ3)
—(a+c1) (o — 52) — 2¢308 — B{Neuptto — datfttg + Nowp (1 — u0)]}
X [Nsubcz(l — up) /uo — NyubCa — NgupCi (30(2[3 — ﬁ3) — 2aNgoff + ¢ (oc4 — 60’ + [34)
+4ei (2 — af’) — aNgup — Nz (o8 = 3ap?) + 2(a — c1)ap + c2 (o2 — )]
+ { Nauttodt — [t + Naup(1 — u)]2 (o2 — f7) }, (23)

110" = [eaNow(1 — ug) /g — 4e1 (2 f — af) + 2 (o — 602 + B*) + 2Nywpactp
+ Nsubaﬁ + NsubC1 (30(2ﬁ - ﬁ3) — NsubC2 (053 - 3aﬁ2) — NsubC2 — Zaaﬁ + 201O(ﬁ
+ (02 = B)] = {Nawwttorr — 2(o? — B*)[uto + Nswn (1 — uo)] }- (24)
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4. Discussion of results

Eq. (23) constitutes an important result concerning the non-linear properties of boiling channel
dynamics. In first place, the sign of k, determines the character of the bifurcation, that is:

k» > 0 = subcritical bifurcation;

k, < 0 = supercritical bifurcation.

Under subcritical conditions, the system is unstable for excitations of any amplitude in the
linear instability region. Moreover, it is also unstable within some region of linear stability for
large enough amplitude excitations. On the other hand, a supercritical system exhibits bounded
periodic solutions (limit cycles) in some region of linear instability (Lahey, 1986). The singular
condition for which k, =0 , represents the transcritical point where the system switches from
subcritical to supercritical. Fig. 4 shows this condition in the parameter plane (Ng, o). It can be
seen that for large subcooling numbers the character of the bifurcation is determined only by the
value of u.

Eq. (23) can also be applied to calculate the amplitude of the limit cycles (when supercritical
bifurcations occur) or alternatively the size of the minimum perturbation that triggers instabilities
within the linear stable domain (when subcritical bifurcations occur). In effect, taking only the
lower-order terms, Eqgs. (14a)—(14c) leads to

k= ko + kzez, (25)

u = uy + € cos wt. (26)

Thus, the relative amplitude of the perturbation can be related with the departure of k from the
linear limit, ky, that is,

2
& k() k—k()
i v ) 27
<MO> kzu%( ko > @7)

1.0 T ————7 . ———
0.8 E
supercritical
0.6 4
u
o
0.4 | -
subcritical
0.2 4
0.0 - — . L - e
1 10 100
N

sub

Fig. 4. Transcritical map (k, = 0).
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For subcritical bifurcations (k, > 0), the lower the value of the factor &,/ (kzué), the lower is the
perturbation required to destabilize a linearly stable condition. Therefore, in stable regions where
this coefficient is low, a special attention should be given to the response of the system to finite-
amplitude perturbations. On the other hand, for supercritical bifurcations (k; < 0), the higher the
value of ko/(k,u}), the smaller is the amplitude of the limit cycles. Therefore, in unstable regions
where ko/(kyu3) is high, the response of the system could be acceptable for design, for the oscil-
lations might remain within controllable ranges. Taking into account these effects of the coeffi-
cient ky/ (kau?) on the stability of the boiling channel, a risk indicator function can be constructed,
which quantifies the potential danger of linearly stable operating conditions, which actually can
become unstable under finite perturbations (metastability):

ko
R =exp [kzué} . (28)
Higher R implies more dangerous situations (metastable regions or large amplitude limit cy-
cles), and R vanishes in the less risky situations (stable under large perturbations or small am-
plitude limit cycles). Values of R larger than 1 indicate potential metastable conditions. For larger
Ny, R depends only on u,. This limit is depicted in Fig. 5. The transcription (R = 1) is located at
up = 0.5. For values of ug larger than 0.5, R decreases substantially, which means that stable limit
cycles of small amplitude are expected close to the instability boundary. Fig. 6 shows the contour
map of R in the plane (Nyen, Nsup) Which are the classical parameters used in linear stability plots of
boiling channels. The map of R can be applied as a warning indicator in those linearly stable
regions where metastability is likely to occur.
The discussion of Egs. (20b) and (24) is also interesting. These equations give information
about the frequency of the oscillations. From Eq. (14c), the second-order frequency correction is
given by

(e)

where 1, is related to Ny, and u, through Eq. (24). The change in the period of the oscillation, T,
is given by

D)
1 4+ wtye?’

(29)

1.0r i

0.5F b

0.0 : ' -
0.4 0.5 0.6 0.7

Uy

Fig. 5. Risk indicator for large Nyyp.
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Fig. 7. Contour map of the frequency coefficient, wt,u3.

AT 2
Feonid( L) (30

Uo

Fig. 7 shows the contour map of the coefficient wtu]. It can be seen that the coefficient wryuf is
always negative, which means that the oscillation period decreases as amplitude increases. For
large Ny, wtouj depends only on ug. This limit is shown in Fig. 8. The value of the coefficient
wtuj decreases abruptly for ug larger than 0.5, meaning that the oscillation period is very sensitive
at higher wuy.

Finally, Egs. (1) and (21) can be combined to calculate the bias of the average inlet velocity due
to non-linear effects, which is given by

”_”"zau0<i>2. (32)

Uo Uy




D. Delmastro et al. | International Journal of Multiphase Flow 27 (2001) 657-671 667

1 T T

wt_u?

3 L
0.4 0.5 0.6
u
o

Fig. 8. Limit of the frequency coefficient for large Nyp.
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Fig. 10. Limit of the bias coefficient for large Nyyp.
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Eq. (32) indicates that the average value of the inlet velocity, #, does not coincide with the
steady-state value that balances the momentum equation, uy, and consequently care should be
taken in analyzing experimental data obtained in oscillating flows. Fig. 9 shows the contour map
of the bias coeflicient, auy, and the limit for large Ny, is plotted in Fig. 10. It can be observed that
the bias is always positive for supercritical bifurcations, meaning that the average velocity is larger
than the steady-state value.

5. Conclusions

A mathematical model of boiling channels dynamics based on delay equations was derived
from the homogeneous two-phase flow conservation equations. A two-dimensional mapping re-
sults from the assumption of constant transport delays along the channel. The stability of the
discrete dynamics was analyzed using linear perturbations about the steady state, showing good
agreement with more sophisticated models.

The character of the oscillatory instabilities was studied using Hopf perturbation methods. The
analysis leads to the identification of subcritical and supercritical bifurcations. It was possible to
characterize the non-linear behavior of the system using a ‘“‘risk” function, which provides a
measure of the amplitude of the limit cycles (either stable or unstable). Moreover, the analysis
permits the characterization of the non-linear effects in the period of oscillation and the bias of the
average inlet velocity. The theoretical results derived using the present approach will be very
useful for contrasting against experimental data, and will serve as a guidance procedure in future
non-linear analyses of more complex boiling channel models.

Appendix A. Relation between u;(¢) and A(?)

Let us consider a harmonic perturbation of the inlet velocity, u;:
ui(t) = uy + ou sin wt. (A.1)

The subcooled length, A, responds following Eq. (2), which gives

t
At) = / ui(?') dt' = vuy + %u [cos w(t —v) — cos wt]. (A.2)

Regarding that

COos wt = €os w(t—%—i—%) = cosw(t—%) cos %— sinw(l—%) sin %, (A.3)

cosw(t —v) = cosw(t—%—%) = cos w(l—%) cos %4— sin w(t—%) sin % (A.4)
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Eq. (A.2) can be written as

20u . :
/l(t):vuo—i—?u sm%smw(t—%)
v 2 v 2 wv
— (=2 ) = sin 2 ~Zsin 2, A.
vu1<t 2)<wv sin 2>+vu0<1 o sin 2) (A.5)
For wv/2 < 1,
2 gin 2 <0017,
wv 2
Also,
TR T
At) = vul<l 2). (A.6)

By comparing Eqgs. (3) and (A.6) one concludes that the approximation given by Eq. (3) is valid
considering #; = v/2. In such case, the angular frequency can be calculated using Eq. (11), which
for Ny > 1 gives

2
OV _ arctan 2\/(1 — u0> — 1) . (A.7)
2 Ug

Therefore, the approximate Eq. (3) is valid for

1
o > = 0.44. (A.8)

tan2(1)
1+ l—f‘aT

Appendix B. Relation between p u, and u;

The density and the velocity at the channel exit, p.(#) and u.(¢), the inlet velocity, u;(¢), can be
exactly written in terms of the subcooled length, A(7) (Achard et al., 1985):

pe = e M, (B.1)
1—A(t) = /eui(t —1—7)eMwdr, (B.2)
ue(t) = ui(t) + Nawn[1 — A(2)], (B.3)

where v is used as reference time.
The order of magnitude of 0 can be estimated using the steady-state values in Eq. (B.2), which

gives

In (Npch — Nsub + l)

0 pu—
Nsub

(B.4)
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Therefore, for large Ny, 0 vanishes. This result is in agreement with the calculations of Riz-
wan-Uddin (1994) from experimental data showing that the two-phase residence time is much
shorter than the single-phase delay. In such case, Eq. (B.2) can be approximated by

(= D - 1)

1— A1) v (B.5)
sub
Combining Egs. (B.1) and (B.3) and (B.5) gives
e ui(t) +Nsub[1 — )V(I)]
pe(t)ue(l) - ul(t 1){ Mi(t R 1) +Nsub[1 . )V([)] } (B6)

For large N
p(b)ue(t) = ut — 1). (B.7)
Comparing Egs. (B.7) and (5), one concludes that #, = 1 (in units of v), and since #; = v/2,
Ll
255

Appendix C. Quasi-static momentum equation

Assuming the homogenous two-phase flow model, the one-dimensional momentum balance is
written as
Opu Opu?

op

2

+ =L C.1
at aZ gp fpu 62’ ( )

where the different terms in the right-hand side represent the pressure drops due to inertia, ac-
celeration, gravity and friction, and the left-hand side is the local pressure gradient.

The quasi-static approximation states that the inertia term is small compared to the other
pressure drops, which is valid for low frequencies:
2

Opu 0
P gt fout =2, (C.2)
Oz Oz

where g is the gravity, p the pressure, and f'is the friction coefficient.
Integrating Eq. (C.2) along a boiling channel subject to constant pressure drop boundary
conditions leads to

Lch Lch
pety — pru; + g/ pdz+ [ fpu’ dz = Ap. (C3)
0 0

Assuming that the frictions at the inlet and exit are much larger than the friction along the
channel (that is, valves, restrictions, orifices):
f = klé(Z) + keé(Z - Lch)u (C4)

where d(z) represents the Dirac delta.
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Replacing Eq. (C.4) in (C.3) gives

puug [t
(ki = Dpgul + (ke + Dpeg + =2 | pdzt=4p, (C5)
where the Froude number is defined as
2
Fr— % ' (C.6)

At high Froude numbers (horizontal channels or high friction flows) the gravity term is small,
yielding to Eq. (4).
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